Genome size reduction can trigger rapid phenotypic evolution in invasive plants.
نویسندگان
چکیده
BACKGROUND AND AIMS The study of rapid evolution in invasive species has highlighted the fundamental role played by founder events, emergence of genetic novelties through recombination and rapid response to new selective pressures. However, whether rapid adaptation of introduced species can be driven by punctual changes in genome organization has received little attention. In plants, variation in genome size, i.e. variation in the amount of DNA per monoploid set of chromosomes through loss or gain of repeated DNA sequences, is known to influence a number of physiological, phenological and life-history features. The present study investigated whether change in genome size has contributed to the evolution of greater potential of vegetative growth in invasive populations of an introduced grass. METHODS The study was based on the recent demonstration that invasive genotypes of reed canarygrass (Phalaris arundinacea) occurring in North America have emerged from recombination between introduced European strains. The genome sizes of more than 200 invasive and native genotypes were measured and their genome size was related to their phenotypic traits measured in a common glasshouse environment. Population genetics data were used to infer phylogeographical relationships between study populations, and the evolutionary history of genome size within the study species was inferred. KEY RESULTS Invasive genotypes had a smaller genome than European native genotypes from which they are derived. This smaller genome size had phenotypic effects that increased the species' invasive potential, including a higher early growth rate, due to a negative relationship between genome size and rate of stem elongation. Based on inferred phylogeographical relationships of invasive and native populations, evolutionary models were consistent with a scenario of genome reduction by natural selection during the invasion process, rather than a scenario of stochastic change. CONCLUSIONS Punctual reduction in genome size could cause rapid changes in key phenotypic traits that enhance invasive ability. Although the generality of genome size variation leading to phenotypic evolution and the specific genomic mechanisms involved are not known, change in genome size may constitute an important but previously under-appreciated mechanism of rapid evolutionary change that may promote evolutionary novelties over short time scales.
منابع مشابه
Association of Intron Loss with High Mutation Rate in Arabidopsis: Implications for Genome Size Evolution
Despite the prevalence of intron losses during eukaryotic evolution, the selective forces acting on them have not been extensively explored. Arabidopsis thaliana lost half of its genome and experienced an elevated rate of intron loss after diverging from A. lyrata. The selective force for genome reduction was suggested to have driven the intron loss. However, the evolutionary mechanism of genom...
متن کاملRapid increase in growth and productivity can aid invasions by a non-native tree
Research on biological invasions has produced detailed theories describing range expansions of introduced populations. However, current knowledge of evolutionary factors associated with invasive range expansions, especially those related to rapid evolution of long-lived organisms, is still rudimentary. Here, we used a system of six 40-year-old invasive pine populations that originated from repl...
متن کاملRapid Evolution of an Invasive Plant
Exotic plants often face different conditions from those experienced where they are native. The general issue of how exotics respond to unfamiliar environments within their new range is not well understood. Phenotypic plasticity has historically been seen as the primary mechanism enabling exotics to colonize large, environmentally diverse areas. However, new work indicates that exotics can evol...
متن کاملForests are not immune to plant invasions : phenotypic plasticity and 1 local adaptation allow Prunella vulgaris to colonize a temperate 2 evergreen rainforest
1 In the South American temperate evergreen rainforest (Valdivian forest), invasive plants 2 are mainly restricted to open sites, being rare in the shaded understory. This is 3 consistent with the notion of closed-canopy forests as communities relatively resistant 4 to plant invasions. However, alien plants able to develop shade tolerance could be a 5 threat to this unique forest. Phenotypic pl...
متن کاملRapid genome‐wide evolution in Brassica rapa populations following drought revealed by sequencing of ancestral and descendant gene pools
There is increasing evidence that evolution can occur rapidly in response to selection. Recent advances in sequencing suggest the possibility of documenting genetic changes as they occur in populations, thus uncovering the genetic basis of evolution, particularly if samples are available from both before and after selection. Here, we had a unique opportunity to directly assess genetic changes i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of botany
دوره 105 1 شماره
صفحات -
تاریخ انتشار 2010